US009224239B2

a» United States Patent (0) Patent No.. US 9,224,239 B2
Smyth 45) Date of Patent: Dec. 29, 2015
(54) LOOK-BASED SELECTION FOR 5,808,617 A 9/1998 Kenworthy et al.
RENDERING A COMPUTER-GENERATED 5,808,625 A * 9/1998 Picottetal. 345/440
5,896,139 A * 4/1999 Straussc...... 345/440
ANIMATION 5,982,380 A 11/1999 Guenter et al.
. . . 5,986,667 A 11/1999 Jevans
(71) Applicant: DreamWorks Animation LL.C, 6,154,215 A 11/2000 Hoperoft et al.
Glendale, CA (US) 6,243,856 Bl 6/2001 Meyer et al.
Continued
(72) Inventor: Ewvan P. Smyth, Glendale, CA (US) (Continued)
. e FOREIGN PATENT DOCUMENTS
(73) Assignee: DreamWorks Animation LL.C,
Glendale, CA (US) EP 1918880 A2 5/2008
EP 1918881 A2 5/2008
(*) Notice: Subject. to any disclaimer,. the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 114 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/831,482 Extended European Search Report received for European Patent
Application No. 14160117.9, mailed on May 26, 2014, 7 .
(22) Filed: Mar. 14,2013 ppiication 7o marec on My pages
(Continued)
(65) Prior Publication Data
US 2014/0267352 Al Sep. 18, 2014 Primary Examiner — Wesner Sajous
(51) Int.Cl (74) Attorney, Agent, or Firm — Morrison & Foerster LLP
GO6T 13/80 (2011.01)
G09G 5/00 (2006.01) (57) ABSTRACT
GO6F 3/048 (2013.01)
GO6T 15/50 (2011.01) A system and method for computing a rendered image of a
GO6T 13/00 (2011.01) computer-generated object in a computer-generated scene. A
(52) US.CL dependency graph is accessed, the dependency graph includ-
P y grap P Y grap
CPC ..o GO6T 15/506 (2013.01); GO6T 13/00 ing a plurality of interconnected nodes including a look-
(2013.01) selector node. An asset is accessed at an input to the look-
(58) Field of Classification Search selector node. The asset includes a plurality of looks for the
USPC ... 345/418-419, 426, 581-582, 589, 440, computer-generated object, each look of the plurality oflooks
345/501, 619; 382/240, 254, 274, 285; corresponding to a different visual appearance of the com-
715/700, 713, 763764 puter-generated object. At the look-selector node, an active
See application file for complete search history. look is selected from the plurality of looks. The active look is
passed to a next node of the dependency graph. The rendered
(56) References Cited image of the computer-generated object is computed having a

U.S. PATENT DOCUMENTS

4,922,413 A 5/1990 Stoughton et al.
5,329,360 A 7/1994 Gillard et al.
5,675,752 A 10/1997 Scott et al.

1000 \

visual appearance that corresponds to the active look.

20 Claims, 8 Drawing Sheets
(3 of 8 Drawing Sheet(s) Filed in Color)

1002

ACCESS DEPENDENCY GRAPH

1004

ACCESS AN ASSET AT LOOK SELECTOR NODE

1006

SELECT AN ACTIVE LOOK

1008

PASS ACTIVE LOOK TO NEXT NODE

1010

COMPUTE RENDERED IMAGE

US 9,224,239 B2

Page 2
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS EP 2779100 Al 9/2014
WO 01/63561 Al 8/2001

6,252,608 Bl 6/2001 Snyder et al. WO 2007/146800 A2 12/2007

6,263,103 Bl 7/2001 Freeman et al. woO 2007146800 A3 11/2008

6,496,190 B1 12/2002 Driemeyer et al. woO 2012/174128 Al 12/2012

6,556,200 Bl 4/2003 Pfister et al.

6,611,262 Bl 8/2003 Suzuki OTHER PUBLICATIONS

6,760,485 Bl 7/2004 Gilman et al.

6,919,891 B2 7/2005 Schneider et al. Open Inventor Toolkit Tutorial, “Chapter 3. Nodes and Groups and

7,174,039 B2 2/2007 Koo et al. Chapter 4. Cameras and Lights”, Available at <http:/www-evasion.

714,626 Bl 8/2008 Picott imag.fr/Membres/Francois.Faure/doc/inventorMentor/sgi__html/

7,439,982 B2 10/2008 Deniau et al. ’)) —

7,548,238 B2 6/2009 Berteig et al. ch03.html>, Retrieved on Oct. 18, 2013, 61 pages.

7,911,472 B2 3/2011 Harper Schmalstieg et al., “Modeling and Rendering of Outdoor Scenes for

7,920,143 Bl 4/2011 Haratsch et al. Distributed Virtual Environments”, ACM VRST *97 Lausanne Swit-

8,009,176 B2 8/2011 Zimmer zerland, 1997, pp. 209-215.

8,259,110 Bl 9/2012 Carr et al. Sun Microsystems, “Reusing Scene Graphs”, Java 3D API Specifi-

8,274,506 Bl 9/2012 R«

Al oes cation, Available at <http://docs.oracle.com/cd/E17802_01/j2se/

8,339,402 B2 12/2012 Henson et al.)

- javase/technologies/desktop/java3d/forDevelopers/j3dguide/

8,352,397 B2 1/2013 Rubin et al. .

8352443 Bl 1/2013 Polson et al. SceneGraphSharing doc.html>, Jun. 1999, pp. 1-11.

8’3 69’ 564 B2 2/2013 Hervas of al International Search Report and Written Opinion received for PCT

8612485 B2 122013 Selan ot al. Patent Application No. PCT/US2014/026792, mailed on Aug. 11,

8624.898 BL* 12014 Bugaj etal. oo 345/440 2014, 7 pages. _ » _

8,773,433 Bl 7/2014 Smyrl Internatlona_l Sejarch Report & Written Opinion rc_ecelved for PCT
2002/0099684 Al 7/2002 Ardoin et al. Patent Application No. PCT/US2014/026799, mailed on Sep. 26,
2002/0140707 Al 10/2002 Samra et al. 2014, 11 pages. ~ _ _ _ _
2002/0163518 Al 11/2002 Rising, II et al. Intro to Animation”, Power Point Presentation, available online at
2003/0156117 Al 8/2003 Higuchi et al. <http://visservices.sdsc.edu/courses/maya/spring06/introtoanim.
2004/0160445 Al 82004 Whatmough ppt>, accessed on Apr. 30, 2013, 32 pages.

2004/0189668 Al 9/2004 Beda et al. “Jung (Java Universal Network/Graph) Framework Manual, Filter-
2004/0222989 Al 11/2004 Zhang et al. ing”, available (_)nline at <http://jung.sourceforge.net/doc/manual.
2004/0222992 Al 11/2004 Calkins et al. html#filter>, retrieved on Apr. 30, 2013, 13 pages.
2005/0039176 Al 2/2005 Fournie et al. “WebKit Coordinated Graphics System”, available online at <http://
2005/0110790 Al 5/2005 D’Amora trac.webkit.org/wiki/CoordinatedGraphicsSystem™>, retrieved on
2005/0140694 Al 6/2005 Subramanian et al. Apr. 30, 2013, 9 pages.
2005/0256950 Al 11/2005 Suzuki Carstarphen, John, “Lighting Effects in Cinema 4D Animation”,
2005/0262470 Al 112005 Gavrilov available online at <http://www.chow.com/video_ 4444919 _ light-
2007/0080964 Al 4/2007 Kainz et al. ing-effects-cinema-4d-animation html>, retrieved on Apr. 30, 2013,
2007/0176926 Al 8/2007 Garcia et al. 2 pages.
2007/0185881 Al 82007 Vienneau et al. Illinois Simulator Lab, “Syzygy Documentation: Programming and
2008/0028414 Al 1/2008 Couture-Gagnon et al. Application Frameworks”, available online at <http://syzygy.isl.
2008; 0049033 Al 2; 2008 Yang uiuc.edu/szg/doc/Programming html>, retrieved on Apr. 30, 2013,
2008/0117216 Al 5/2008 Dorie Dec. 17,2012, 11 pages.
2008/0231633 Al 9/2008 Keller et al. Lu et al “Knowledge-Based Digital Media Processing: Generic
2008/0238916 Al 10/2008 Ghosh et al. Object Registration using Multiple Hypotheses Testing in Partition
2008/0278482 Al 11/2008 Farn_mnbar etal. Trees”, IEE Proc.-Vis. Image Signal Process, vol. 153, No. 3, Jun.
2009/0021513 Al 1/2009 Joshi et al. 2006 PP 323-330.
2009/0027380 Al N 172009 Rajan et al. Oishi, et al., “Parallel Alignment of a Large Number of Range
%8}8;8?;2‘7‘% 2} * 2@8}8 grifdzettaali """"""""" gjg ;347‘(3) Images”, Proceedings of the Fourth International Conference on 3-D
ollard ¢ N 5 .

2010/0134501 Al 6/2010 Lowe ef al. 2D(;gl3ta%l}r)1;aggelsng and Modeling (3DIM’03), IEEE Computer Society,
2010/0214284 Al 8/2010 Rietfel et al. Techfuels, “The Lighting Scene in 3D Animation”, available online
2010/0214313 Al 8/2010 Herman et al.) o S

at <http://www.techfuels.com/applications/9895-lighting-scene-3d-
2010/0289804 Al 11/2010 Jackman et al. A ;

animation html>, retrieved on Apr. 30, 2013, 3 pages.
2010/0302249 Al 12/2010 Fowler et al. L wr s oq » . .
5010/0322358 Al 12/2010 D Toon Boom Animation, “Lighting Effects”, available online at

rumm et al. .

2011/0090236 Al* 4/2011 Calsyn etal. .ooocon.... 345/581 <http://bc_eta.toonbo_om.cf)m/_home-users/toon_-boom-studlo/re-
5011/0106843 Al 5/2011 Pan et al. sources/tips-and-tricks/lighting-effects™>, retrieved on Apr. 30, 2013,
2011/0181606 Al* 7/2011 Sumneretal. 345474 2 pages. . _ .
2011/0182479 Al 72011 Sese et al. Van Der Bee.k, Jelle, Deper.ldency Graphs in Games , Gamasutra the
2011/0234587 Al 9/2011 Maigret et al. Art & Busmess_ of Making Games, available at <httpf//www.
2012/0095745 Al 4/2012 Le Guevel-Scholtens et al. gamasutra.corp/Vlew/ feature/131221/dependency_ graphs_in__
2012/0166446 Al 6/2012 Bowman et al. games.php?print=1>, accessed on Apr. 30, 2013, 15 pages.
2012/0280991 Al 11/2012 Maloney et al. Nop Final Office Action received for U.S. Appl. No. 13/843,695,
2012/0280995 Al 11/2012 Anderson mailed on Oct. 22, 2014, 16 pages.
2012/0284664 Al 11/2012 Zhao Non Final Office Action received for U.S. Appl. No. 13/844,424,
2013/0090850 Al 4/2013 Mays mailed on Oct. 28, 2014, 10 pages.
2013/0120421 Al 5/2013 Maguire Barrett et al., “A Monotonic Superclass Linearization for Dylan”,
2013/0120422 Al 5/2013 Rao et al. Oopsla 96, Jun. 28, 1996, pp. 69-82.
2013/0127891 Al 5/2013 Kim et al. Invitation to pay additional fees received for PCT Patent Application
2014/0035908 Al* 2/2014 Powell etal. 345/419 No. PCT/US2014/026799, mailed on Jul. 25, 2014, 2 pages.
2014/0059564 Al 2/2014 Vigneras et al. Non Final Office Action received for U.S. Appl. No. 13/843,980,
2014/0108485 Al 4/2014 Geibel et al. mailed on Feb. 5, 2015, 15 pages.

US 9,224,239 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Non Final Office Action received for U.S. Appl. No. 13/844,016,
mailed on Feb. 5, 2015, 23 pages.

Non-Final Office Action received for U.S. Appl. No. 13/844,363,
mailed on Feb. 24, 2015, 9 pages.

Non-Final Office Action received for U.S. Appl. No. 13/831,309,
mailed on Feb. 24, 2015, 8 pages.

Final Office Action received for U.S. Appl. No. 13/843,695, mailed
on Feb. 23, 2015, 21 pages.

Non-Final Office Action received for U.S. Appl. No. 13/844,497,
mailed on Mar. 13, 2015, 21 pages.

Rossler et al., “Dynamic Shader Generation for Flexible Multi-Vol-
ume Visualization”, Visualisation Symposium, Mar. 2008, pp. 17-24.
Non Final Office Action received for U.S. Appl. No. 13/844,113,
mailed on Apr. 10, 2015, 10 pages.

Final Office Action received for U.S. Appl. No. 13/831,309, mailed
on Jun. 5, 2015, 8 pages.

Notice of Allowance received for U.S. Appl. No. 13/831,309, mailed
on Jul. 21, 2015, 14 pages.

Final Office Action received for U.S. Appl. No. 13/844,363, mailed
on Aug. 6, 2015, 12 pages.

Notice of Allowance received for U.S. Appl. No. 13/844,380, mailed
on Jul. 17, 2015, 7 pages.

Extended European Search Report (includes Supplementary Euro-
pean Search Report and Search Opinion) received for European
Patent Application No. 14160119.5, mailed on Jun. 30, 2015, 11
pages.

“Robocopy.exe Robust File Copy Utility Version XP010”, Microsoft
Corporation, 2003, pp. 1-35.

“Open Inventor toolkit Tutorial”, Chapter 3. Nodes and Groups and
Chapter 4. Cameras and Lights, Available online at <http://www-
evasion.imag.fi/Membres/Francois.Faure/doc/inventorMentor/sgi_
html/ch03 html>, Retrieved on Oct. 18, 2013, 61 pages.

Bederson etal., “Toolkit Design for Interactive Structured Graphics”,
IEEE Transactions On Software Engineering, vol. 30, No. 8, Aug.
2004, pp. 535-546.

Qi-Cheng et al., “High-Extensible Scene Graph Framework Based on
Component Techniques”, Journal of Zhejiang University Science A,
vol. 7, No. 7, 2006, pp. 1247-1252.

Dobos et al., “3D Revision Control Framework”, Web3D, 2012, pp.
121-129.

Dollner et al., “Object-Oriented 3D Modelling, Animation and Inter-
action”, The Journal of Visualization and Computer Animation, vol.
8, 1997, pp. 33-64.

Tobler, Robert F., “Separating Semantics from Rendering: A Scene
Graph Based Architecture for Graphics Applications”, Visual Com-
puter, vol. 27, 2011, pp. 687-695.

* cited by examiner

US 9,224,239 B2

Sheet 1 of 8

Dec. 29, 2015

U.S. Patent

} Ol

.

o
o
-

.

coppi |
-
. »%%%«w@%m@fﬁﬁy.
]
%w&%%@%@%%%%%%%
.
..
...
- 0
%%@wﬁ@%@gg&% -
..
- ovw/@&/%\%fz - %fv 0\2@,\@% %&
...
0 S - .
.
...
%A@M%W%%W@%@ﬁ%ﬂ@ -
< @WWz

&@
«

<
o

o
.
-

N
..
<

. - 0 - o ;%W\x . é%w«
- . >
. \%@%@A§@\ - .
«
..
- .. _ _ _ __ _ - _ @
...
. - @@%ﬁﬁ%@%&%@& .
. - &z&o%e . - .
..
e =
- - -
%\%YMW »&N &@v%/ . /w\%g.&
- . -
o

.

- -
e %w&m@«?
- «%%Wwﬂh&%&/ %§ -

-
.-
. - W@@M@@%f@ﬂ» - w%%%w@véaﬁ
.. _ . @
ﬁw@%@%&%@%@%&%%ﬁ%ﬁ%&%% . . .
... f
< e -\ e < - -
. . .
e . ° = Sk

.
. .
. . .
... .
- Aw//w/.mm« . . /@WYW%\ - @w w«, %ﬂ
v . - .
. W\ac/ - - . .
- . .
,
- . .

. -
»%VWW@\
%&%
o

&@(

- .

. . @%&m@@@%%%%&%
- o o - o G - ,/,ez\@v@w%\w&;&/ww&; -
. . Q&M&%&@ .

... ...

AR

US 9,224,239 B2

Sheet 2 of 8

Dec. 29, 2015

U.S. Patent

RJE|

-

=
v/\@mww\cmw =

-

-

US 9,224,239 B2

Sheet 3 of 8

Dec. 29, 2015

U.S. Patent

£€Gl —

~
-

%MWWMM .

T e e
...
e .

.

-
.
- -

S R

o

rGl

.

-
.

.
o

.

x«%@%%wwv@&?«/

e

.
.
.
.
o

-

U.S. Patent Dec. 29, 2015 Sheet 4 of 8 US 9,224,239 B2

FIG. 4A

U.S. Patent Dec. 29, 2015 Sheet 5 of 8 US 9,224,239 B2

FIG. 4B

U.S. Patent Dec. 29, 2015 Sheet 6 of 8 US 9,224,239 B2

g g g
o [5S) o
S S S
N N N
©
S
— & e
@ Ql
&
-
o
| S
&N N
m| %
(a|
bl
(o¥]
Q
& © w0
© "N
Q L
© N @
S
]
<< ~—
e ~N
N

206

202

U.S. Patent Dec. 29, 2015 Sheet 7 of 8 US 9,224,239 B2

1000~
~ 1002
ACCESS DEPENDENCY GRAPH
l ~ 1004
ACCESS AN ASSET AT LOOK SELECTOR NODE
l ~ 1006
SELECT AN ACTIVE LOOK
l ~ 1008
PASS ACTIVE LOOK TO NEXT NODE

l ~ 1010

COMPUTE RENDERED IMAGE

FIG. 6

US 9,224,239 B2

Sheet 8 of 8

Dec. 29, 2015

U.S. Patent

40IA4A AV1dSId

€0

N

A

Z Old

LINN ONISSTD0Yd
SOIHdVEO

¥00

AN

WHLSAS 31NdNOD NOILYLSHHOM

000¢

AJONWAW FTILITOA

00¢

AHOWZIN 3TLITOA-NON
800¢

A

LINN ONISS3O0Hd
TVH1INGO
¢00¢

A 4

ADINIA LNdNI
0c0¢

US 9,224,239 B2

1
LOOK-BASED SELECTION FOR
RENDERING A COMPUTER-GENERATED
ANIMATION

BACKGROUND

1. Field

The present disclosure relates to computer-generated ani-
mation and, more specifically, to rendering an image of a
computer-generated scene using a dependency graph.

2. Related Art

A computer-generated animation image can be created by
rendering one or more computer-generated objects to depicta
scene in the image. Light sources, materials, textures, and
other visual effects can be associated with the computer-
generated objects to create a realistic visual appearance for
the animation image. A dependency graph can be used to
define the relationships between assets (which represent the
computer-generated objects) and a variety of visual effects as
part of the rendering process. The dependency graph typically
includes one or more interconnected nodes associating the
assets with one or more visual effects, where a node wire can
pass the assets and visual effects from node-to-node for pro-
cessing. The output of the dependency graph can be used to
create a rendered image of the scene.

In a typical computer-animation scenario, a computer-gen-
erated object is an animated character or object that can be
posed or placed in the scene. Multiple visual effects are
applied to the character or object to define a lighting configu-
ration for the scene, which gives the character or object a
more realistic appearance. In some cases, there are different
visual representations that are used depict the character or
object. For example, an animated character may change
clothing, hair styles, or other visual appearances as dictated
by the animator or director. Traditionally, the different visual
appearances are treated as separate computer-generated
objects and, therefore, the visual effects must be reapplied for
every change. This results in redundant lighting setups and
may increase the difficulty in maintaining consistent lighting
conditions for multiple visual appearances of the animated
character.

It is therefore desirable to create a system that applies the
same visual effects or lighting conditions to a different visual
appearance of the same animated character without the draw-
backs mentioned above.

SUMMARY

One exemplary embodiment includes a computer-imple-
mented method for computing a rendered image of a com-
puter-generated object in a computer-generated scene. A
dependency graph is accessed. The dependency graph com-
prises a plurality of interconnected nodes, wherein one of the
interconnected nodes includes a look-selector node. An asset
is accessed at an input of the look-selector node. The asset
includes a plurality of looks for the computer-generated
object, each look of the plurality of looks corresponding to a
different visual appearance of the computer-generated object.
An active look is selected from the plurality of looks, at the
look-selector node. The active look is passed to a next node of
the dependency graph. The rendered image of the computer-
generated object is computed, the computer-generated object
having a visual appearance that corresponds to the active
look.

In some embodiments, the selected look includes unique
surface geometry that is not included in the other looks of the
plurality of looks. In some cases, the selected look includes

10

25

30

40

45

50

2

unique surface shading detail that is not included in the other
looks of the plurality of looks.

In some embodiments, one or more nodes of the plurality
of'nodes assigns a visual effect to the asset. In some cases, the
visual effect is a virtual light source. In some embodiments, a
visual effect is assigned to the asset at an upstream node that
precedes the look-selector node in the dependency graph,
wherein the visual effect is assigned to each look of the
plurality of looks ofthe asset. In some embodiments, a visual
effect is assigned to the asset at a downstream node that
follows the look-selector node in the dependency graph,
wherein the visual effect is assigned only to the active look of
the plurality of looks of the asset.

In some embodiments, the next node is a render node and
the render node is used to compute the rendered image of the
computer-generated scene. In some embodiments, the depen-
dency graph includes two or more look-selector nodes, each
look-selector node passing a different active look to a respec-
tive render node that is downstream from the look-selector
node in the dependency graph.

BRIEF DESCRIPTION OF THE FIGURES

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

The present application can be best understood by refer-
ence to the following description taken in conjunction with
the accompanying drawing figures, in which like parts may be
referred to by like numerals.

FIG. 1 depicts a set of computer-generated objects associ-
ated with a scene.

FIG. 2 depicts a set of computer-generated objects associ-
ated with a scene with lighting effects applied.

FIG. 3 depicts a rendered image of a scene.

FIG. 4A depicts a computer-generated object rendered
using a first look.

FIG. 4B depicts a computer-generated object rendered
using a second look.

FIG. 5 depicts a schematic representation of a render setup
graph.

FIG. 6 depicts an exemplary process for rendering an
image using look-based partitioning in a dependency graph.

FIG. 7 depicts an exemplary workstation computer system.

DETAILED DESCRIPTION

The following description is presented to enable a person
of'ordinary skill in the art to make and use the various embodi-
ments. Descriptions of specific devices, techniques, and
applications are provided only as examples. Various modifi-
cations to the examples described herein will be readily
apparent to those of ordinary skill in the art, and the general
principles defined herein may be applied to other examples
and applications without departing from the spirit and scope
of the present technology. Thus, the disclosed technology is
not intended to be limited to the examples described herein
and shown, but is to be accorded the scope consistent with the
claims.

A computer-generated animation is typically created by
rendering a sequence of images, each image depicting a com-
puter-generated scene composed of one or more computer-
generated objects. Light sources, materials, textures, and
other visual effects are associated with the computer-gener-
ated objects to create a realistic visual appearance for the
computer-generated scene.

US 9,224,239 B2

3

FIG. 1 depicts an exemplary computer-generated scene
having multiple computer-generated objects positioned in a
three-dimensional space. For purposes of this discussion, a
computer-generated scene generally refers to the three-di-
mensional space that can be filmed using a virtual camera,
and may also be referred to generically as a scene. As shown
in FIG. 1, the scene 100 includes surface models of a teapot
151, a sphere 152, a cylinder 153, a cone 153, and a cube 154.
In a typical computer animation, the computer-generated
objects include one or more computer-animated characters
that have been posed or manipulated for purposes of gener-
ating a computer-animated film sequence. In this example,
the computer-generated objects are surface models defined
using surface geometry. In other examples, the computer-
generated objects may be defined using solid geometry or
defined using other three-dimensional modeling techniques.

As shown in FIG. 1, a virtual camera 104 is positioned to
view a portion of the scene 100. Typically, the virtual camera
104 has a field of view that is defined by a camera frustum that
projects away from the lens of the virtual camera 104. The
position of the virtual camera 104 and computer-generated
objects (151-154) in the scene 100 are typically determined
by a human operator, such as an animator or director.

As described in more detail below, lights and other visual
effects may also be applied to the scene 100 to give it a more
realistic appearance. FIG. 2 depicts the scene 100 with light-
ing effects applied to the computer-generated objects 151-
154. As shown in FIG. 2, the computer-generated objects
have been illuminated by a diffuse light source so that the
computer-generated objects 151-154 are illuminated from the
camera-side. Each computer-generated object 151-154 is
shaded in accordance with the diffuse light source and cast a
shadow on the floor and walls of the scene 100. The scene 100
is also illuminated by one or more ambient light sources to
provide an overall illumination lighting effect to the scene
100. Other light sources that can be used to illuminate the
scene 100 include, for example, point lights, spot lights, and
area lights.

FIG. 3 depicts a rendered image 101 of the portion of the
scene 100 in view of the virtual camera 104. The computer-
generated objects 151, 153, and 154 in FIG. 3 have been
rendered using multiple light sources and one or more types
of surface shaders for each computer-generated object to
produce a realistic-looking image of the scene 100. Surface
shaders are used to simulate the optical properties of the
surface of the computer-generated objects and define the
color, texture, specular properties, and other optical charac-
teristics of the surface of the computer-generated objects. A
surface shader may use, for example, a bidirectional reflec-
tance distribution function (BRDF) or other technique for
simulating the reflection of light incident on a computer-
generated surface. The surface shaders may also be used to
define a group of optical properties to simulate a material
(e.g., fur, skin, or metal). Typically, the configuration of the
light sources, surface shaders, and surface materials are con-
figurable for each computer-generated scene and may be
referred to generally as a lighting configuration.

As mentioned previously, an animated character may
change visual appearance as determined by the animator or
director. FIGS. 4A-B depict two different visual appearances
or “looks” for the same animated character, Alex the lion. In
FIG. 4A depicts a first look of Alex the lion with a brown-
colored mane. FIG. 4B depicts a second look for Alex the lion
with a purple-colored mane. There may be additional, differ-
ent looks for Alex the lion that include different clothing, hair
styles, levels of detail, or beauty. For example, a low-resolu-
tion “level-of-detail” look for Alex may be used for scenes

10

15

20

25

30

35

40

45

50

55

60

65

4

where Alex is far from the camera and fine features, such as
fur or whiskers are too small to see. There may be multiple
level-of-detail looks, each look representing the appearance
of a character as viewed from a different distance. Addition-
ally, an animated character may have a “beauty” look that
defines a full-detail version of the animated character. A
beauty look may be appropriate when creating a cinema-
quality rendered image of the animated character. In many
cases, the different looks are created using different surface
geometry, surface shaders, and/or materials.

As previously mentioned, a lighting configuration may be
designated on an object-by-object basis or by set of objects in
a scene. For example, a spot-light light source may be asso-
ciated only with the main characters in the foreground of the
scene and may not illuminate other objects. Alternatively, an
ambient light might be associated with only the plants in the
scene and have no effect on the main characters. This
approach simplifies the computations required to render a
scene and also provides the animator or user with more flex-
ibility when configuring the visual effects in a scene. How-
ever, the additional flexibility can make it difficult to manage
a large number of computer-generated objects and their asso-
ciated visual effects. Managing a large number of associa-
tions may become even more difficult when the same com-
puter-generated objects (e.g., animated characters) have
multiple looks, each look having an association with various
visual effects.

In the implementations described herein, a dependency
graph is used to manage the associations between computer-
generated objects and visual effects. For purposes of this
discussion, a particular type of dependency graph, called a
render setup graph, is used to manage the associations
between computer-generated objects and visual effects used
to render the scene. FIG. 5 depicts an exemplary visualization
of'a render setup graph 200. The render setup graph 200 may
be displayed on a computer display and manipulated using a
graphical user interface and computer I/O hardware, as
described in more detail in Section 2, below. The render setup
graph 200 is generally configurable by an animator or user
and can be used to create multiple lighting scenarios for a
scene.

The render setup graph 200 typically accepts as input, a set
of computer-generated objects represented by assets located
in asset storage 202. In this implementation, one or more of
the assets corresponds to an animated character or computer-
generated object having multiple looks, or visual representa-
tions. As discussed above, each look may have different
geometry, clothing, materials, or level of detail. In this imple-
mentation, the multiple looks for an animated character or
computer-generated object are included in a single asset in the
render setup graph.

In the render setup graph 200, visual effects, such as light
sources, shaders, and materials are assigned to the assets at
various nodes 204A-E. In this example, the render setup
graph 200 is evaluated from left to right with each node
204 A-E assigning one or more visual effects to a set of assets,
each asset representing a computer-generated object in the
scene. Node wires 206 are used to pass assets and associated
visual effects between elements of the render setup graph
200. Assets and their associated visual effects can also be
routed by organizer nodes 210A-B configured to divide an
input set of assets into two or more subsets. Eventually, the
assets and their associated visual effects are passed to one of
the render nodes 208A-C. In this example, each render node
208A-C contains the completed lighting configuration and
can be stored or used to create a rendered image of the scene.

US 9,224,239 B2

5

Render setup graph 200 also includes a special type of node
called a look-selector node 212A-C. As described above, an
asset may have multiple looks corresponding to different
visual appearances of an animated character. As an asset
progresses through the render setup graph, only one look can
be active at a time. The look-selector node 212A-C selects
one of the multiple looks to be passed on as the active look to
subsequent nodes in the render setup graph.

Render setup graphs typically include other elements that
provide a variety of functions and operations on the assets as
they propagate through the elements. For example, a render
setup graph may also include splitter, combiner, and other
routing elements. These other elements are omitted from this
discussion and the example depicted in FIG. 5 for clarity. The
techniques discussed below also apply to render setup graphs
having additional elements or fewer elements to those
depicted in the render setup graph 200 of FIG. 5.

In general, a render setup graph can be used to define
multiple rendering passes for a scene. Each rendering pass
may combine a subset of partition assets with a unique group-
ing of visual effects. For example, a rendering pass may be
configured to render only the assets in the background of the
scene. A rendering pass may also be configured to render a
subset of partition assets using a simplified set of light sources
and shaders to reduce the rendering computations that are
necessary to compute the rendered image of the scene.

The render setup graph 200 depicted in FIG. 5 depicts three
exemplary rendering passes, as indicated by the presence of
three render nodes 208A-C. The lighting configurations for
each rendering pass are defined by the respective nodes
204A-E that are connected to each respective render node
208A-C by the node wires 206.

In some cases, it may be desirable to render the scene using
the same lighting configuration, but with different looks for
the computer-generated objects. For example, the same light-
ing configuration may be used for both a first, standard look of
an animated character for pre-production rendering purposes
and for a second, beauty look of a character for cinema-
quality rendering purposes. Without a look-selector node, the
entire portion of the render setup graph associated with a
particular render pass would have to be duplicated in order to
create the two rendered images: one portion of the graph for
the standard look, and a second portion of the graph for the
beauty look.

However, using a look-selector node, portions of the render
setup graph do not need to be re-setup or duplicated in order
to produce a rendered image with different looks for a com-
puter-generated object or animated character. As described in
more detail below with respect to process 1000, a look-selec-
tor node can be used to change the active look of a computer-
generated object to generate a rendered image of the scene
with animated characters having a different visual appear-
ance. As shown in FIG. 5, if the look-selector nodes 212A-C
are placed near their respective render nodes 208A-C, the
visual effects assigned by the upstream nodes (204A-B,
204D-E) can be re-used for different looks designated by the
downstream look-selector nodes 212A-C. As a result, the use
of look-selector nodes 212A-C may result in a simplified
render setup graph that is easier to manage and maintain.

1. Evaluating a Dependency Graph Using Look-Selector
Nodes

FIG. 6 depicts an exemplary process 1000 for evaluating a
dependency graph, such as a render setup graph. Process 1000
may be performed using a workstation computer system, as
described below with respect to FIG. 7 as part of a computer-
animation process. Exemplary process 1000 may be per-
formed, for example, after the computer-generated objects

10

15

20

25

30

35

40

45

50

55

60

65

6

(e.g., animated characters) have been placed or posed in the
scene and stored as assets in a centralized storage database.
Process 1000 is typically performed before an image of the
scene has been rendered.

Process 1000 may provide advantages over other rendering
techniques that do not use a look-selector node. Specifically,
process 1000 may reduce the complexity and redundancy in a
render setup graph by reusing a lighting configuration for
objects having different looks. Using process 1000, the direc-
tor or animator may establish the lighting configuration for a
rendering pass of a scene once, and reuse the configuration to
render animated characters having different visual appear-
ances.

Process 1000 is typically practiced while computing a ren-
dering pass of a computer-generated scene for an animated
film sequence using a dependency graph. For purposes of the
following discussion, examples of process 1000 are provided
with respect to a look-selector node of a render setup graph.
Reference is made to FIG. 5 depicting a render setup graph
200 including look selector nodes 212A, 212B, and 212C. In
other implementations, the look-selector nodes or the func-
tions performed by the look-selector nodes could be com-
bined with other nodes of the render setup graph.

In operation 1002, a dependency graph is accessed. FIG. 5
depicts one type of dependency graph, namely a render setup
graph 200. As discussed above, the render setup graph 200
includes a plurality of nodes 204A-E, 210A-B, 212A-C and
208A-C that are interconnected using node wires 206. The
nodes 204 A-E may associate one or more visual effects (e.g.,
lighting or materials) with a set of assets representing com-
puter-generated objects in the scene. The assets and associ-
ated visual effects are passed between the interconnected
nodes via the node wires 206.

As described above with respect to FIG. 5, look-selector
nodes 212A-C are used to select or designate an active look
that can be passed to downstream elements of the render setup
graph. Using one or more look-selector nodes, a render setup
graph can be configured to render an animated character
having multiple looks using a single rendering pass repre-
sented by one of the render node 208A-C.

In operation 1004, an asset is accessed at a look-selector
node. With reference to the render setup graph in FIG. 5, an
asset is accessed at an input of one of the look-selector nodes
212A-C. In this example, the asset is accessed as a set of
assets at an input of one of the look-selector nodes 212A-C
via one or more node wires 206. The asset represents a com-
puter-generated object, such as an animated character. In this
example, the asset includes multiple looks for the computer-
generated object, each look corresponding to a different
visual appearance of the computer-generated object when
rendered in an image. With reference to the animated charac-
ter Alex the lion depicted in FIG. 4A-B, the asset that repre-
sents Alex the lion includes at least two different looks: a first
look with a brown-colored mane and a second look with a
purple-colored mane.

The other assets in the set of assets typically represent other
computer-generated objects in the scene. These other assets
may also include multiple looks for each of the other com-
puter-generated objects. In many cases, multiple assets in the
set have at least two looks: a first, standard look used for
pre-production rendering purposes and a second, beauty look
used for cinema-quality rendering purposes.

As shown in FIG. 5, the look-selector nodes 212A-C are
downstream of at least one or more nodes (204A-B, 204D-E)
used to assign visual effect to the assets that are passed
through the render setup graph. In this example, the visual
effects are associated with each of the looks of an asset as it is

US 9,224,239 B2

7

passed through a respective node 204A-E of the dependency
graph. In this way, the same lighting configuration can be
applied to different looks of an asset at the same time. With
regard to operation 1004, the visual effects that have been
associated with the assets as they are passed through the
render setup graph are also typically received at the look-
selector node 212A-C.

In operation 1006, an active look is selected at the look-
selector node. The active look corresponds to a visual appear-
ance of the computer-generated object that is to be included in
the rendered image. For example, in the scenario if a pre-
production rendering pass is being performed, the look-se-
lector node may be configured to select a standard look of the
asset as the active look. Alternatively, if a cinema-quality
rendering pass is being performed, the look selector node may
be configured to select a beauty look of the asset as the active
look.

In many cases, the look-selector node also selects an active
look for the other assets of the set of assets that are received at
the look-selector node. The active look that is selected for the
other assets may correspond to each other. For example, in the
case where a cinema-quality rendering pass is being per-
formed, the look selector node may be configured to select a
beauty look as the active look for each of the assets having a
beauty look.

It is not necessary that the active look for of all the assets be
set to the same active look. For example, the beauty look may
be selected for one of the assets, which is being inspected for
detail flaws in the rendering pass. A low resolution level-of-
detail may be selected for the other assets to reduce the
processing load when computing the rendered image (in
operation 1010, below). With reference to Alex the lion
depicted in FIG. 4B, the first look corresponding the Alex
with a purple-colored mane may be selected only for the asset
that represents Alex the lion. The other assets may not have a
look that corresponds to a different colored mane and may not
be affected by the look-selector node.

The look-selector node may be configurable to select a
different look based on a user input. Additionally or alterna-
tively, the look-selector node may be configurable to select a
different look depending on a value or setting that is stored in
computer memory. In another embodiment, the type of look
that is selected by the look-selector is not configurable. In this
case, different look-selector nodes must be swapped into the
render setup graph in order the change the type of look that is
selected.

In operation 1008, the active look of the asset is passed to
the next node in the render setup graph. With reference to FIG.
5, the active look selected by, for example, look-selector node
212A passed to the next downstream node 208A via node
wire 206. Visual effects that have already been associated
with the set of partition assets by, for example, upstream
nodes 204 A and 204B, are also passed to the next node in the
render setup graph.

In some cases, downstream nodes may assign additional
visual effects to the set of assets that are passed from the
look-selector node. For example, as shown in FIG. 5, assets
passed from look-selector node 212B are passed to node
204C, which may assign additional visual effects to the
assets. In contrast to node 204 A that is upstream of the look-
selector nodes 212B, the downstream node 204C only assigns
visual effects to the active look of the assets. As discussed
above, the nodes that are upstream of a look-selector node
typically assign visual effects to all of the looks of an asset.

In operation 1010, a rendered image is computed. As
shown in FIG. 5, the assets and associated visual effects are
eventually passed to a respective render node 208A-C. Each

10

15

20

25

30

35

40

45

50

55

60

65

8

render node 208 A-C corresponds to a different rendering pass
and can each be used to produce a rendered image. In this
example, the information received at one of the render nodes
208A-C can then be passed to a rendering process to compute
a rendered image. Computing a rendered image may include
performing one or more processes on the assets using the
selected visual effect(s) based on the dependency graph. The
external processes may include any process, such as render-
ing, shading, rasterizing, or the like that the animator, lighter,
or other user may want to perform on the objects used by the
dependency graph.

FIGS. 4A-B depict two exemplary images that may be
produced using process 1000. FIG. 4A depicts an exemplary
rendered image depicting Alex the lion using a first look. As
shown in FIG. 4A, the first look for Alex corresponds to a
visual appearance including a brown-colored mane. FIG. 4B
depicts another exemplary image depicting Alex the lion
using a second look. As shown in FIG. 4B, the second look for
Alex corresponds to a visual appearance including a purple-
colored mane.

In other examples, a rendered image can be created using
an active look that is different than the two depicted in FIGS.
4A and 4B. For example a low-resolution level-of-detail look
or beauty look could also be used to compute a rendered
image. As mentioned above, other looks may depict different
clothing, hair styles, or other visual appearances for the ani-
mated character.

In a typical implementation, multiple rendered images are
created having the animated character in different positions.
Process 1000 may be repeated to create each rendered image.
The rendered images may be used to create an animated film
sequence of the scene including the animated characters and
other computer-generated objects represented by the assets in
the render setup graph.

2. Workstation Computer System

FIG. 7 depicts an exemplary workstation computer system
2000 that can be used to implement the render setup graph and
techniques discussed above. The render setup graph can be
implemented, for example, in either hardware or in software
stored on a non-transitory computer-readable storage
medium. The system can be configured to generate, modify,
and evaluate the render setup graph to configure and manage
lighting configuration data as well as external processes used
to render a computer-generated image. The system can be
further configured to receive input from a user and to display
graphics, an image, or scene of an animation based on the
render setup graph.

The workstation computer system 2000 can be configured
to receive user input from an input device 2020. The input
device 2020 can be any device that receives input from the
user and transmits it to the workstation computer system
2000. For example, the input device 2020 can be a keyboard,
a mouse, atablet, a stylus, or the like. Those skilled in the art
will recognize that other types of input devices can also be
used.

The workstation computer system 2000 can be configured
to output graphics, images, or animation to a display device
2030. The display device 2030 can include any device that
receives data from the workstation computer system and pre-
sents the data to the user. For example, the display device
2030 may include a liquid crystal display, a set of light-
emitting diodes, a projector, or the like. Those skilled in the
art will recognize that other types of output devices can also
be used.

The workstation computer system 2000 may further
include a central processing unit 2002. The central processing
unit may include one or more processing cores. The central

US 9,224,239 B2

9

processing unit 2002 may be coupled to and able to commu-
nicate with the input device 2020. Although the workstation
computer system 2000 is illustrated with one central process-
ing unit 2002, the workstation computer system 2000 may
include multiple processing units. The workstation computer
system 2000 may also include a graphics processing unit
2004. The graphics processing unit 2004 may be dedicated to
processing graphics-related data. The graphics processing
unit 2004 may include a single processing core or multiple
processing cores. Although the workstation computer system
2000 is illustrated with one graphics processing unit 2004, the
workstation computer system 2000 may include a plurality of
graphics processing units. The central processing unit 2002
and/or the graphics processing unit 2004 may be coupled to
and able to communicate data to the output device 2030.

In one example, the workstation computer system 2000
may include one or more processors and instructions stored in
a non-transitory computer-readable storage medium, such as
amemory or storage device, that when executed by the one or
more processors, perform animation rendering using a render
setup graph, as described above. In the context of the embodi-
ments described herein, a “non-transitory computer-readable
storage medium” can be any medium that can contain or store
the program for use by or in connection with the instruction
execution system, apparatus, or device. The non-transitory
computer readable storage medium can include, but is not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus or device, a
portable computer diskette (magnetic), a random access
memory (RAM) (magnetic), a read-only memory (ROM)
(magnetic), an erasable programmable read-only memory
(EPROM) (magnetic), a portable optical disc such a CD,
CD-R, CD-RW, DVD, DVD-R, or DVD-RW, or flash
memory such as compact flash cards, secured digital cards,
USB memory devices, memory sticks, and the like.

The workstation computer system 2000 may include vola-
tile memory 2006, which is a non-transitory computer-read-
able storage medium, in communication with the central pro-
cessing unit 2002. The volatile memory 2006 may include,
for example, random access memory, such as dynamic ran-
dom access memory or static random access memory, or any
other type of volatile memory. The volatile memory 2006
may be used to store data or instructions during the operation
of the workstation computer system 2000. Those skilled in
the art will recognize that other types of volatile memory can
also be used.

The workstation computer system 2000 may also include
non-volatile memory 2008, which is a non-transitory com-
puter-readable storage medium, in communication with the
central processing unit 2002. The non-volatile memory 2008
may include flash memory, hard disks, magnetic storage
devices, read-only memory, or the like. The non-volatile
memory 2008 may be used to store animation data, render
setup graph data, computer instructions, or any other infor-
mation. Those skilled in the art will recognize that other types
of non-volatile memory can also be used.

The workstation computer system 2000 is not limited to the
devices, configurations, and functionalities described above.
For example, although a single volatile memory 2006, non-
volatile memory 2008, central processing unit 2002, graphics
processing unit 2004, input device 2020, and output device
2030 are illustrated, a plurality of any of these devices can be
implemented internal or external to the workstation computer
system 2000. In addition, the workstation computer system
2000 may include a network access device for accessing
information on a network, such as an internal network or the

10

15

20

25

30

35

40

45

50

55

60

65

10

Internet. Those skilled in the art will recognize that other
configurations of the workstation computer system 2000 can
be used.

Various exemplary embodiments are described herein.
Reference is made to these examples in a non-limiting sense.
They are provided to illustrate more broadly applicable
aspects of the disclosed technology. Various changes may be
made and equivalents may be substituted without departing
from the true spirit and scope of the various embodiments. In
addition, many modifications may be made to adapt a par-
ticular situation, material, composition of matter, process,
process act(s), or step(s) to the objective(s), spirit, or scope of
the various embodiments. Further, as will be appreciated by
those with skill in the art, each of the individual variations
described and illustrated herein has discrete components and
features that may be readily separated from or combined with
the features of any of the other several embodiments without
departing from the scope or spirit of the various embodi-
ments.

What is claimed is:

1. A computer-implemented method, performed using one
or more processors, for computing a rendered image of a
computer-generated object in a computer-generated scene,
the method comprising:

accessing, using the one or more processors, a dependency

graph, the dependency graph comprising a plurality of
interconnected nodes, wherein one ofthe interconnected
nodes includes a look-selector node;

accessing, using the one or more processors, an asset at an

input of the look-selector node, wherein the asset
includes a plurality of looks for the computer-generated
object, each look of the plurality of looks corresponding
to a different visual appearance of the computer-gener-
ated object;

selecting, using the one or more processors, at the look-

selector node, an active look from the plurality of looks;
passing, using the one or more processors, the active look
to a next node of the dependency graph; and
computing, using the one or more processors, the rendered
image of the computer-generated object having a visual
appearance that corresponds to the active look.

2. The computer-implemented method of claim 1, wherein
the selected look includes unique surface geometry that is not
included in the other looks of the plurality of looks.

3. The computer-implemented method of claim 1, wherein
the selected look includes unique surface shading detail that is
not included in the other looks of the plurality of looks.

4. The computer-implemented method of claim 1, wherein
one or more nodes of the plurality of nodes assigns a visual
effect to the asset.

5. The computer-implemented method of claim 1, wherein
the visual effect is a virtual light source.

6. The computer-implemented method of claim 1, further
comprising:

assigning a visual effect to the asset at an upstream node

that precedes the look-selector node in the dependency
graph, wherein the visual effect is assigned to each look
of the plurality of looks of the asset.

7. The computer-implemented method of claim 1, further
comprising:

assigning a visual effect to the asset at a downstream node

that follows the look-selector node in the dependency
graph, wherein the visual effect is assigned only to the
active look of the plurality of looks of the asset.

US 9,224,239 B2

11

8. The computer-implemented method of claim 1, wherein
the next node is a render node and the render node is used to
compute the rendered image of the computer-generated
scene.

9. The computer-implemented method of claim 1, wherein
the dependency graph includes two or more look-selector
nodes, each look-selector node passing a different active look
to a respective render node that is downstream from the look-
selector node in the dependency graph.

10. A tangible, non-transitory computer-readable storage
medium comprising computer-executable instructions for
computing a rendered image of a computer-generated object
in a computer-generated scene, the computer-executable
instructions comprising instructions for:

accessing a dependency graph, the dependency graph com-

prising a plurality of interconnected nodes, wherein one
of the interconnected nodes includes a look-selector
node;

accessing an asset at an input of the look-selector node,

wherein the asset includes a plurality of looks for the
computer-generated object, each look of the plurality of
looks corresponding to a different visual appearance of
the computer-generated object;

selecting, at the look-selector node, an active look from the

plurality of looks;

passing the active look to a next node of the dependency

graph; and

computing the rendered image of the computer-generated

object having a visual appearance that corresponds to
the active look.

11. The computer-readable storage medium of claim 10,
wherein the selected look includes unique surface geometry
that is not included in the other looks of the plurality oflooks.

12. The computer-readable storage medium of claim 10,
wherein the selected look includes unique surface shading
detail that is not included in the other looks of the plurality of
looks.

13. The computer-readable storage medium of claim 10,
further comprising:

assigning a visual effect to the asset at an upstream node

that precedes the look-selector node in the dependency
graph, wherein the visual effect is assigned to each look
of the plurality of looks of the asset.

14. The computer-readable storage medium of claim 10,
further comprising:

assigning a visual effect to the asset at a downstream node

that follows the look-selector node in the dependency

10

20

25

30

35

40

45

12

graph, wherein the visual effect is assigned only to the
active look of the plurality of looks of the asset.

15. The computer-readable storage medium of claim 10,
wherein the next node is a render node and the render node is
used to compute the rendered image of the computer-gener-
ated scene.

16. The computer-readable storage medium of claim 10
wherein the dependency graph includes two or more look-
selector nodes, each look-selector node passing a different
active look to a respective render node that is downstream
from the look-selector node in the dependency graph.

17. An apparatus for computing a rendered image of a
computer-generated object in a computer-generated scene,
the apparatus comprising:

a memory configured to store data; and

a computer processor configured to:

access a dependency graph, the dependency graph com-
prising a plurality of interconnected nodes, wherein
one of the interconnected nodes includes a look-se-
lector node;

access an asset at an input of the look-selector node,
wherein the asset includes a plurality of looks for the
computer-generated object, each look of the plurality
of looks corresponding to a different visual appear-
ance of the computer-generated object;

select, at the look-selector node, an active look from the
plurality of looks;

pass the active look to a next node of the dependency
graph; and

compute the rendered image of the computer-generated
object having a visual appearance that corresponds to
the active look.

18. The apparatus of claim 17, wherein the computer pro-
cessor is further configured to:

assign a visual effect to the asset at an upstream node that

precedes the look-selector node in the dependency
graph, wherein the visual effect is assigned to each look
of the plurality of looks of the asset.

19. The apparatus of claim 17, wherein the computer pro-
cessor is further configured to:

assign a visual effect to the asset at a downstream node that

follows the look-selector node in the dependency graph,
wherein the visual effect is assigned only to the active
look of the plurality of looks of the asset.

20. The apparatus of claim 17, wherein the next node is a
render node and the render node is used to compute the
rendered image of the computer-generated scene.

#* #* #* #* #*

